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Abstract—It is commonly accepted that optimal control theory 

was born with the publication of a seminal paper by Pontryagin and 

collaborates last century, at the end of 50’s. Since then optimal 

control theory has played a relevant role not only in the dynamic 

optimization but also in the control and system engineering. Another 

crucial moment in this theory is closely related with the development 

of nonsmooth analysis during the 70’s and 80’s. Nonsmooth analysis 

has triggered a renew interest in optimal control problems and 

brought new solutions to old problems. 

 Nowadays optimal control theory is essential to different areas 

like system engineering, economics and biology since many problems 

are modelled as optimal control problems. A challenging area of 

study in this theory remains that of state constraints. In this paper we 

review the very basic notions of optimal control problems with and 

without state constraints focussing on necessary conditions of 

optimality for state constrained problems.  An overview of the state 

of the art on the subject is presented and we state the main issues we 

aim to study in the near future. 

 

Index Terms—Optimal control, State constraints, Maximum 

principle, Nonsmooth analysis.  

 

I. INDRODUCTION 

HE fundamental concepts in optimal control theory came 

to light more than three centuries ago with the publication 

of Johann Bernoulli’s solution of the Brachystochrone problem 

in 1697 [24]. However the main developments in this field 

occurred 50-60 years ago. Nowadays Optimal Control is an 

independent field of research. The development of optimal 

control has gained strength by treating multivariable, time-

varying systems, as well as many nonlinear problems arising in 

control engineering. Several authors contributed to the basic 

foundation of a very large scale research effort initiated in the 

end of the 1950’s, which continues to the present day.  

The Pontryagin Maximum Principle plays a crucial role in 

optimal control theory. It extends the classical Euler and 

Weierstrass conditions from the classical calculus of variations 

to control settings [7]. The development of Nonsmooth 

Analysis ([7] and   [26]) has enhanced a wide scope of 

research as well as it has opened a new horizon in the optimal 

control theory.  

Necessary conditions of optimality for optimal control 

problems with state constraints have been studied since the 

very beginning of optimal control theory [21]. In spite of all 

 
1Md. Haider Ali Biswas. PDEEC, Student ID. 080535022. Department of 

Electrical and Computer Engineering, Faculty of Engineering, University of 

Porto, Portugal. Phone: 351-927020271; fax: 22 508 1537; e-mail: 

mhabiswas@yahoo.com,  dee08022@fe.up.pt. 

 

the recent developments, this subject is far from explored. In 

particular, the presence of measures in these conditions, 

related to the entry and exit time of the constraint boundary, is 

not very attractive for applications.  

This paper focuses on the overall scenarios of the optimal 

control theory in where our topic of interest lies. Accordingly 

we will concentrate on a review of such problems and we 

explore the state of the art by investigating the background of 

OCPs up to the recent developments in this field. This paper is 

organized as follows. In Section 2, optimal control problems 

are formulated in different forms and in Section 3, different 

formulations of state constraints are discussed. In Section 4, 

optimal control problems without and with state variable 

constraints are studied. Section 5 is devoted to a discussion of 

the Pontryagin maximum principle. In Section 6, the role of 

penalization in converting a state constrained problem to an 

equivalent problem without state constraint is discussed. 

Section 7 deals with a brief review of nonsmooth optimal 

control problems along with nonsmooth maximum principle 

and finally in Section 8 we have made a conclusion with some 

future directions of our research. 

II. OPTIMAL CONTROL PROBLEMS (OCPS)  

As mentioned before, the Optimal Control Problems (OCPs) 

appeared as essential tools in modern control theory in the late 

1950s. Since the birth of the optimal control, several authors 

proposed different basic mathematical formulations of OCPs 

(fixed time problems). For fixed time problems three major 

mathematical formulations of the optimal control problems: 

Bolza form, Lagrange form and Mayer form are of special 

importance. We will discuss here these three forms and how 

one form is related to others. We start with the general form of 

Bolza (again fixed ``time`` problem) as 

( )
( ) ( )

( ) ( ) [ ]
( )

[ ]

M in ( ), ( ) , ( ), ( )

Subject to , ( ), ( ) a.e. ,

( ), ( )

( ) ( ) a.e. ,

b
J x a x b L t x t u t dt

a

x t f t x t u t t a bP
B

x a x b C

u t t t a b

ϕ


= + ∫

 = ∈
 ∈

 ∈ ∈

ɺ

U

where [ ],a b  is a fixed interval, : n nϕ × →R R R , 

:[ , ] n m
L a b × × →R R R  and :[ , ] n m nf a b × × →R R R  

are functions, 
n n

C ⊂ ×R R  is a closed set  and 

:[ , ] ma b → �
RU  is a multifunction. 

The functional ( ) ( )( ), ( ) , ( ), ( )
b

J x a x b L t x t u t dt
a

ϕ= + ∫          (2.1) 
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to be minimized is called the payoff or cost functional. The 

aim of this problem is to find the pair ( ),x u comprising two 

functions where :[ , ] mu a b → �
R (the control function) and 

the corresponding state trajectory x  which is an absolutely 

continuous function :[ , ] nx a b →R  (called the state 

function) satisfying all the constraints of the problem ( )BP and 

minimizing in some sense the cost. A pair   ( ),x u where  x  is 

an absolutely continuous function and u  is a function 

belonging to a certain space U  (U can be 
1,L C , the space 

of measurable functions, the space of piecewise continuous 

functions, etc.) such that ( ) ( ), ( ), ( ) a.e.x t f t x t u t=ɺ
 
is called a 

process. A ‘process’ ( ),x u  satisfying all the constraints of the 

problem ( )BP  is called an admissible process. The set of all 

admissible processes ( ),x u  is called the domain of the 

problem ( )BP . We say that ( )* *,u x  is an optimal solution if 

it minimizes the cost over all admissible processes. For 

optimal control problems one may speak of local or global 

minimizers. Local minimizers can be also of different types. 

See, for example [26] for more details. 

If the function : n nϕ × →R R R  is absent from the cost 

functional (2.1) and all others data remain the same, we obtain 

the optimal control problem in Lagrange form; the cost is 

simply 

                     ( ), ( ), ( )
b

J L t x t u t dt
a

= ∫                                    (2.2) 

On the other hand, if the Lebesgue integrable function 

:[ , ] n mL a b × × →R R R  is absent from the cost functional 

(2.1) and all others constraints remain the same,  we obtain the 

Mayer form with cost  

                            ( )( ), ( )J x a x bϕ=                                      (2.3) 

However, we can reformulate Bolza form (2.1) into Mayer 

form by means of the process called state augmentation. Let us 

define, 

                      
( ), ( ), ( )

(0) 0

y L t x t u t

y

=

=

ɺ

                                      (2.4) 

Then the problem ( )BP  can be rewritten as following 

( )

( )

( ) ( ) [ ]
( ) ( ) [ ]

( )( ) { }
[ ]

M in ( ), ( )

S ub ject to

, ( ), ( ) a.e. ,

, ( ), ( ) a.e. ,

( ), ( )

( ) ( ) a.e. ,

( )

, ( ) 0

J x a x b

x t f t x t u t t a b

P
M t L t x t u t t a b

x a x b C

u t t t a b

y b

y

y b

ϕ= +

= ∈

= ∈

∈ ×

∈ ∈













ɺ

ɺ

U

        (2.5) 

This new problem (2.5) is in Mayer form. More extensive 

studies on the transformations of the optimal control problems 

from the Bolza form to the other two special forms along with 

examples can be found in [20] and [15], problems in three 

forms in [2], and problems in Mayer form in [16] and 

transformation of problems from Bolza form to Lagrange can 

be found in [6]. 

Different variants of optimal control problems appear in the 

control system dynamics over the years. The problems we 

have mentioned here are fixed time problems (since the time 

interval [ ],a b  is fixed). There are also problems with free 

time, minimum time problems, constrained problems (state 

constrained or mixed constrained or both) as well as impulsive 

control problems. We are not going to discuss all the details. 

III. STATE CONSTRAINTS 

State constraints are obviously constraints imposed on the 

state variables and they can appear in numerous situations. As 

an example consider the modelling of the temperature of a 

reactor. Taking the state to be the temperature, ( )x t  it is 

natural impose an upper limit M to this variable. This gives 

rise to the state constraint 

                          ( )x t M≤  

 State constraints are a natural feature in many practical 

applications of optimal control problems. Let us briefly review 

some of the main form of such constraints.  

A. Equality state constraints: Let : [ , ]
n

h a b × →R R  be 

any given function. Then   

                   ( ), ( ) 0, a.e. [ , ]h t x t t a b= ∈   

is an equality state constraint. 

B. Inequality state constraints: Let :[ , ] n
h a b × →R R  

be any given function. Then   

     ( ), ( ) 0, a.e. [ , ]h t x t t a b≤ ∈   

is an inequality state constraint. 

C. Implicit state constraints: Let : [ , ] nX a b → �
R  be any 

given multifunction. Then   

         ( ) ( ), a.e. [ , ]x t X t t a b∈ ∈   

is called an implicit state constraint. 

D. Mixed state-control constraints:  

Let : [ , ] n m kg a b × × →R R R  be any given function. 

Then   

            ( ), ( ), ( ) 0, a.e. [ , ]g t x t u t t a b≤ ∈   

is a mixed state-control constraint. 

Usually one refers to constraints of types A, B and C as pure 

state constraints to highlight the difference with those in the 

form D which are mixed constraints. Observe that state 

constraints are imposed for all t  in an interval [ ],a b  while 

mixed constraints can be imposed simply for almost every t . 

 Focussing on the first three types of constraints it is obvious 

that type C is the more general (see in this respect the 

discussion in [26], chapter 9). Constraints of type A and B can 

be written as  

                ( ) ( )x t X t∈ for all [ ],t a b∈  

where  { }( ) : : ( , ) 0nX t x h t x= ∈ =R  or   
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             { }( ) : : ( , ) 0nX t x h t x= ∈ ≤R  

Mixed state control constraints of type D or even more general 

constraints of the form ( )( ), ( ) ( )x t u t S t∈ are distinct from the 

pure state constraints. From the point of view of optimality 

conditions state constraints and mixed constraints have 

different treatments. Necessary conditions for problems with 

constraints of type D can be obtained when some constraint 

qualifications (also called in this case regularity conditions) 

are imposed. Such constraint qualifications involve the control 

variable. Clearly such constraint qualifications do not make 

any sense when state constraints are presented since the state 

constraints exhibit no dependence on the control variable. In 

some situations pure state constraints of type B and mixed 

constraints D can be related. That may occur when the 

function h  can be differentiated with respect to t  so as to 

obtain higher order derivatives containing the control variable. 

Here we present briefly this procedure.  Suppose, for 

simplicity, that ( , )h t x ∈R . Define 

( ) ( )0 , ( ), ( ) , ( )h t x t u t h h t x t= =  

1( , , ) ( , ) ( , , ) ( , )x th t x u h h t x f t x u h t x= = +ɺ  

2 1 1 1( , , ) ( , ) ( , , ) ( , )x th t x u h h t x f t x u h t x= = +ɺ  

                           ⋮  
1 1 1( , , ) ( , , ) ( , , ) ( , , )p p p p

x t
h t x u h h t x u f t x u h t x u

− − −= = +ɺ (3.2)    

Then the state constraint 0h ≤  is called of order p if 

( ) ( ), , 0, for 0 1, , , 0.i p

u uh t x u i p h t x u= ≤ ≤ − ≠     (3.3) 

The relevance of this recursive procedure is discussed in [13]. 

See also [16] on Nondegenerate conditions for higher order 

state constraints problems.  

Next we discuss some important features of state 

constraints: the instants of time when the trajectory enters or 

leaves the boundary of the state constraints. Entry and exit 

times of a trajectory are indeed crucial when dealing, for 

example, with necessary conditions for optimal control 

problems with state constraints. For the sake of simplicity we 

focus on constraints of type B. Observe that in this case the 

boundary of the state constraints is the set 

                      [ ]{ }, : ( , ) 0a bt h t x∈ =   

Consider a subinterval [ ]0 1
( , ) ,t t a b⊂ , 

0 1t t< . Here [ ],a b  is 

a fixed interval. Then the interval [ ]0 1,t t  is called an interior 

interval of a trajectory x  if ( ), ( ) 0,h t x t < for all 

] [0 1,t t t∈ and an interval [ ]1 2,t t  is called a boundary interval 

if  

                        ( ), ( ) 0h t x t =  for all [ ]1 2
,t t t∈ . 

Definition: An instant 0t  is defined to be an entry time with 

respect to the trajectory x  if   the interior interval [ ]0 1,t t  ends 

at 1t t=  and the boundary interval [ ]1 2,t t  starts at 1t . 

Definition: An instant 2t  is defined to be an exit time with 

respect to the trajectory x  if the boundary interval [ ]1 2,t t  

ends at 2t t= and the interior interval [ ]2 3,t t  starts at 2t . 

Definition: An instant t  when the trajectory x just hits the 

boundary, i.e., ( ), ( ) 0,h t x t = but just before and just after 

that time t  the trajectory remains in the interior, is called the 

contact time. Entry, exit and contact times all together are 

called the junctions times. 

Before moving to the next discussion it is convenient to 

emphasize that mixed state-control constraints are not the main 

subject of the proposed thesis. This is the reason why we do 

not discuss them here. However, the interested reader may see 

([1] and [18]) for detailed treatments of such sorts of 

problems. 

IV. OPTIMAL CONTROL PROBLEMS: WITHOUT AND WITH 

STATE CONSTRAINTS  

In this section we will illustrate the effect of state constraints 

on the solution of an optimal control problem. We choose a 

simple problem and we solve it. Next we introduce a state 

constraints to that problem and see how the solution of the 

problem changes. Let us first consider the problem without 

state constraints 

              ( )
[ ]

( ) ( )

3
M in ( )

0

. t . ( ) . .
1

( ) 1,1 . .

( 0 ) , (3 ) 1,1

J x t d t

s x u t a eP

u t a e

x x


= ∫


 =
 ∈ −

 =

ɺ
 

The optimal control that minimizes the cost 

                        
[ [
[ ]

*
1  if  t 0,1.5

( )
1   if  t 1.5,3

u t
− ∈

= 
∈

 

which gives the optimal solution                                    

                      
[ [
[ ]

*
1 if 0,1.5

( )
2 if 1.5,3

t t
x t

t t

 − ∈
= 

− ∈
 

The graphs of the optimal trajectories are shown in Fig. 4.1(a) 

(state trajectory) and in Fig. 4.1 (b) (control trajectory). 

 

 

 

 

 

 

 

 

 

 

Fig. 4.1 Optimal solution of problem
1

( )P . 
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Now we discuss the same cost of the problem ( )1
P  with state 

constraint: 

( )
[ ]

( ) ( )

3
M in ( )

0

. t . ( ) . .

( ) 0 fo r a ll
2

( ) 1,1 . .

( 0 ) , (3 ) 1,1

J x t d t

s x u t a e

P x t t

u t a e

x x


= ∫


 =


≥
 ∈ −
 =



ɺ

 

Since we have to minimize the cost of the problem ( )2
P  

subject to the state constraint 0x ≥  and the boundary 

conditions (0) (3) 1x x= = , the optimal solution ( )* *,x u will be 

such that the cost should be kept as small as possible. The 

solution is  

[ [
[ [
[ ]

*

1 if 0,1

( ) 0 if 1, 2

2 if 2,3

t t

x t t

t t

 − ∈


= ∈


− ∈

,  

[ [
[ [
[ ]

*

1 if 0,1

( ) 0 if 1,2

1 if 2,3

t

u t t

t

− ∈


= ∈


∈

 

 

The graphs of the optimal trajectories of problem
2

( )P  are 

shown in Fig. 4.2 (a) (state trajectory) and in Fig. 4.2 (b) 

control trajectory).  

 

 

 

 

 

                    

 

 

 

Fig. 4.2  Optimal solution of problem 
2

( )P . 

Observe that the interval [ ]1, 2  is a boundary interval being 

1t =  and 2t =  entry and exit times respectively. Both 

intervals [ [0,1  and ] ]2, 3  are interior intervals.                

State constraints do appear in practice in many applications of 

system and control engineering, especially in robotics and 

space-crafts.  For examples, when moving a robot from one 

point to another in a room with obstacles the obstacles 

introduce state constraints.  

V. THE PONTRYAGIN MAXIMUM PRINCIPLE 

The maximum principle (MP) is one of the most elegant 

methods used to solve the OCPs. It provides a set of necessary 

conditions which should be satisfied by any optimal solution 

of optimal control problem. Admissible solutions satisfying the 

Maximum Principle are called extremals. All extremals are 

candidate to the optimal and the optimal solution will be 

among the set of extremals. Not surprisingly the idea behind 

derivation of necessary conditions in the form of Maximum 

Principles is to obtain MPs that produces the smallest set of 

candidates to the optimal. It is well known that for some 

problems the Maximum Principle is not only a necessary 

condition of optimality but also a sufficient condition (for a 

discussion on this feature in a smooth and nonsmooth context 

see [20]).  

One way of obtaining necessary conditions of optimality for 

optimal control problems is via optimization on infinite 

dimensional spaces. In fact an optimal control problem may be 

regarded as an optimization problem in corresponding infinite 

dimensional (Hilbert or, in general, Banach) spaces. Applying 

necessary conditions of optimality to such infinite dimensional 

problem and representing them in the appropriate form we 

obtain the Maximum Principle.  

The maximum principle is a milestone in the development of 

modern optimal control theory. Maximum principle plays 

significant role not only in solving the smooth problems, but 

also in problems with nonsmooth functions. When the data of 

the problem are smooth, we call the corresponding maximum 

principle smooth, but for the problems with nonsmooth data 

we call it nonsmooth maximum principle. Here we will present 

a maximum principle for a particular smooth optimal control 

problem with state constraints. The nonsmooth maximum 

principle will be discussed in Section 7. 

We consider now ´´the following problem with state 

constraints´´ 

( )

( )
( ) ( )
( )

0

Min ( ), ( )

s. t. , ( ), ( ) a.e. [ , ]

for all [ , ]

( ) ( ) a.e. [ , ]

, ( ) 0

( )

J x x

x t f t x t u t t

OCP h t

u t t t

a b

a b

t x t a b

a b

x a x

ϕ=

= ∈

∈

∈ ∈






≤


 ∈


ɺ

U
 

Here : [ , ] mu a b → R  is a measurable function and the arc 

[ ]( )1,1
, ;

n
x W a b∈ R (i.e., absolutely continuous function) 

depends on the choice of control u  and the initial state 0x . 

Before stating the maximum principle for the state constrained 

problem ( )OCP  we present here a basic definition related to 

the MP. 

Definition 5.1 (Strong local minimum): An admissible 

process 
* *( , )x u  is called a strong local minimum for the 

problem ( )OCP  if, for some 0ε > , the process 
* *( , )x u is 

minimizes the cost over all the admissible processes ( , )x u  

satisfying *( ) ( )x t x t ε− ≤  for all [ ],t a b∈ . 

We start by stating the Maximum Principle for (OCP) 

without state constraints, i.e., we assume that the constraint 

( ), ( ) 0h t x t ≤ is absent from the problem. 

The smooth maximum principle, which we present next, is 

valid under smooth assumptions on the data. Here, and for 

simplicity, we consider that the functions ,f ϕ  are all 

1

0 31 2
t

*x

(a) Optimal Trajectory

1−

10
2

t

*
u
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continuously differentiable. Observe that in (OCP) (and again 

for the sake of simplicity) we assume the multifunction U  to 

be constant (i.e., ( )t =U U ) and U  is a closed set. We define 

the pseudo-Hamiltonian 

              ( ) ( ), , , , , , .H t x p u p f t x u=  

The next Theorem is an adaptation of Theorem 9.3.1 in [26]. 

Theorem 5.1 (The Maximum Principle for (OCP) 

without state constraints): Suppose that ( )* *,u x is a strong 

local minimum of ( )OCP  without state constraints. Then 

there exists [ ]( )1,1 , ; , 0np W a b λ∈ ≥R  such that the 

following conditions are satisfied: 

(i) The Nontriviallity Condition 

         ( ) ( ), 0,0p λ ≠  

(ii) The Adjoint Equation                             

( )* *( ) , ( ), ( ), ( ) a.e.
x

p t D H t x t p t u t− =ɺ  

(iii) The Weierstrass Condition 

( ) ( )* * *, ( ), ( ), ( ) max , ( ), ( ),
u

H t x t p t u t H t x t p t u
∈

=
U

 

(iv) The Transversality Condition 

( ) ( ) ( )* *( ), ( ) ( ), ( ) ,0p a p b D x a x bλ ϕ ζ− = +   

for some
nζ ∈R . 

The function p  is called the costate (adjoint) function and λ  

the cost multiplier. The adjoint equation is also called the 

costate differential equation.  

We now turn to the more general problem (OCP), this time 

assuming that the state constraint is imposed. The effect of 

state constraints is the introduction of measures as multipliers. 

The adjoint multiplier p is then related with a function q of 

bounded variation. We need to introduce some new concepts 

before proceeding.  The multipliers associated with state 

constraints will be elements of the topological dual 

[ ]( )* , ;C a b R  of the space of continuous functions 

[ ]( ), ;C a b R . Elements of [ ]( )* , ;C a b R  can be identified 

with finite regular measures on the Borel subsets of[ ],a b . 

The set of elements in [ ]( )* , ;C a b R  taking nonnegative values 

on nonnegative-valued functions in [ ]( ), ;C a b R  is denoted 

by [ ]( ), ;C a b⊕
R . The norm in [ ]( ), ;C a b⊕

R ,
TV

µ  

coincides with the total variation of
[ ],

, ( )
a b

dsµ µ∫ . The 

support of a measure [ ]( )* , ;C a bµ∈ R , written { }supp µ , is 

the smallest closed set [ ],A a b⊂  such that for any relatively 

open subset [ ], \B a b A⊂  we have ( ) 0Bµ = .  

Let us assume again that the functions ,f ϕ   and h  are all 

continuously differentiable and as before, that U  is a closed 

set. Then the following holds: 

Theorem 5.2 (The Maximum Principle): (adaptation of 

Theorem 9.3.1 in [26]) Suppose that ( )* *,u x is a strong local 

minimum of ( )OCP . 

 Then [ ]( ) ( )1.1 , ; , 0, ,n
p W a b C a bλ µ ⊕∃ ∈ ≥ ∈R and a 

measurable function [ ]: , n
a bγ →R  satisfying 

( )*( ) , ( )   . .xt h t x t a eγ µ=  such that the following 

conditions are satisfied: 

(i) The Nontriviallity Condition 

         ( ) ( ), , 0,0,0p µ λ ≠  

(ii) The Adjoint Equation                             

( )* *( ) , ( ), ( ), ( ) a.e.
x

p t D H t x t q t u t− =ɺ  

(iii) The Weierstrass Condition 

( ) ( )* * *, ( ), ( ), ( ) max , ( ), ( ), a.e.;
u

H t x t q t u t H t x t q t u
∈

=
U

 

(iv) The Transversality Condition 

( ) ( ) ( )* *( ), ( ) ( ), ( ) ,0p a q b D x a x bλ ϕ ζ− = +  

for some
nζ ∈R  

(v) { } ( )*supp I xµ ⊂ .  

Here we define,  : ( ) ( );  i.e.,q p s dsγ µ= + ∫  

[ )
[ )

[ ]

,

,

( ) ( ) ( )   for ,

( ) :
( ) ( ) ( )   for 

a t

a b

p t s ds t a b

q t
p b s ds t b

γ µ

γ µ

 + ∈


= 
+ =



∫

∫
 

and ( ) ( ){ }* *: : , ( ) 0I x t h t x t= =   

We do not discuss different issues related with this result (as 

for example, degeneracy of the above set of conditions) and 

we do not present its proof. We refer the readers to see ([14] 

and [26]) for the proof of the theorem and for more discussion 

on maximum principle for state constrained problems.   

VI. THE ROLE OF PENALTY FUNCTION IN OPTIMAL 

CONTROL PROBLEMS  

It is almost obvious that constraints are important in most 

optimization problems. Sometimes problems with multiple 

objectives are reformulated with some of the objectives acting 

as constraints. Difficulty in satisfying constraints will increase 

(generally more than linearly) with the number of constraints 

[23]. Especially the presence of pure state constraints makes 

the problems hard to solve. In such situation, penalty function 

is an essential tool which plays a crucial role to solve the 

problems and in the derivation of necessary conditions. 

Penalty functions have been a part of the literature on 

constrained optimization for decades. A detailed survey of 

penalty methods and their applications to nonlinear 

programming can be found in [3, 5, 17] and the references 
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therein. In these methods, the original constrained problem is 

replaced by an unconstrained problem, whose objective 

function is the sum of a certain “merit” function (which 

reflects the objective function of the original problem) and a 

penalty term which reflects the constraint set. The merit 

function is chosen in general as the original objective function, 

while the penalty term is obtained by multiplying a suitable 

function, which represents the constraints, by a positive 

parameter K , called the penalty parameter. A given penalty 

parameter 
*

K  is called an exact penalty parameter when 

every solution of the original problem can be found by solving 

the unconstrained optimization problem with the penalty 

function associated with 
*

K . The penalty approach showed to 

be a powerful tool from a theoretical point of view (see, e.g., 

[3] for a detailed survey of theoretical applications of penalty 

methods). Furthermore, some fundamental notions of the 

theory of constrained optimization can be developed using the 

exact penalty function approach (see [5]). Various kinds of 

penalty techniques have been proposed and studied in the past 

four decades. In this section, we will discuss how penalty 

function is used to convert the constrained optimal control 

problems to the equivalent problems without state constraints.  

Suppose we have the optimal control problem in the form 

( )

( )

( ) ( )
( )

( )

Min , ( ), ( )

Subject to , ( ), ( ) , a.e. [ , ]

, ( ) 0, a.e. [ , ]

( ), ( )

( ) ( ), a.e. [ , ]

b
J l t x t u t dt

a

x t f t x t u t t a b

P h t x t t a b

x a x b C

u t t t a b


= ∫


= ∈


≤ ∈


∈

 ∈ ∈



ɺ

U

     (6.1) 

where the functions ( ) ( ), ( ), ( ) , , ( ), ( )l t x t u t f t x t u t  are well 

behaved. We remove the constraints ( ), ( ) 0h t x t ≤  by penalizing 

the cost with the integral  

                  ( ){ }max 0, , ( )
b

h t x t dt
a
∫                                      (6.2)  

Then we get 

( )
( ) ( ){ }

( ) ( )

0

Min , ( ), ( ) max 0, , ( )

s.t.  , ( ), ( ) , a.e. [ , ]

( ) ( ), a.e. [ , ]

( )

K

b b
J l t x t u t dt K h t x t dt

a a

x t f t x t u t t a bR

u t t t a b

x a x


= +∫ ∫


 = ∈
 ∈ ∈


=

ɺ

U
 

Thus we can get a standard optimal control problem by adding 

the penalty function (6.2) to the cost for some 0K >  and K  

is called the penalty parameter. Now, the interesting fact is 

that our problem involves the use of optimality conditions for 

nondifferentiable functions as the cost with penalty term is not 

differentiable, even if the original problem involves only 

differentiable functions. Several authors (see for examples [27] 

and [13]) showed the relation between the solutions of a 

sequence of problems  and that of problem (P). They 

show that under some well-posed conditions, the sequence of 

solutions to problems  converges to the minimizer of the 

original problem ( )P . Thus, the penalty function plays a 

significant role in transferring an optimal control problem with 

state constraints into equivalent problem without state 

constraints. The applications of penalty function in such types 

of problems can be found more details in [10, 28]. 

Remarks: 

 In spite of the above mentioned importance of penalty 

function, in some cases, especially in the theoretical point of 

view, the use of penalty function does not provide good 

results. However, this approach gives good results in 

numerical calculations of optimal control problems [25].    

VII. NONSMOOTH  OPTIMAL CONTROL PROBLEMS 

Nonsmooth Analysis had been closely interrelated with 

Optimal Control theory since 1970’s. The present day research 

in optimal control requires an essential familiarities as well as 

an in-depth understanding with nonsmooth analysis. In control 

theory, the necessity of nonsmooth analysis first came to light 

while finding the proofs of necessary conditions for optimal 

control, notably in connection with the Pontryagin Maximum 

Principle. This necessity holds even for problems which are 

expressed entirely in terms of smooth data. Generally 

nonsmooth analysis is taken into account when one wants to 

consider problems which are truly nonlinear or 

nonlinearizable, whether for deriving or expressing necessary 

conditions, in applying sufficient conditions, or in studying the 

sensitivity of the problem. 

 The main notion in the classical (smooth) mathematical 

analysis is that of gradient. Nonsmooth analysis deals with 

nondifferentiable functions, therefore, the problem is to find a 

proper replacement for the concept of gradient. The notion of 

a subdifferential (or generalised gradient) was introduced to 

serve as a replacement for the derivative [19].  

The quest for some replacement of the derivative has a long 

history and can be dated to Dini in the XVIII century. The first 

successful attempts to obtain a nondifferential calculus took 

place in the 60’s and 70’s of the XX century where 

smoothness assumptions were replaced by convexity. The 

book "Convex Analysis" by Rockafellar is a cornerstone in 

such development. In the seventies F. Clarke generalized the 

convex subdifferentials of Rockafellar to cover Lipschitz 

continous functions and to some extent, lower semi-continuous 

functions (see, for example [7]). He also successfully applied 

nonsmooth analysis to optimization and optimal control 

theory. In 76’s Mordukhovich proposed the concept of 

limiting subdifferential and he showed how transversality 

conditions in the nonsmooth Maximum principle could be 

weakened. 

In classical sense, derivatives of a function f are related to 

normal vectors to tangent hyperplanes; for any differentiable 

function f the vector ( )( ), 1f x′ − is a downward normal to 

the graph of f  at ( ), ( )x f x . This geometric relationship is 

the key for the development of nonsmooth analysis. Instead of 

considering derivatives as elements of normal subspaces to 

smooth sets, ‘generalized derivatives’ are defined to be 

elements of normal cones to possibly nonsmooth sets. 
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 Now, we will discuss some fundamental definitions which 

are closely related to the study of nonsmooth analysis.  

Let  
n

C ⊂ R  be a closed and non-empty subset and 

\nx C∈R . Let c C∈ . The distance function is defined by 

       { }( ) : inf ,Cd x x c c C= − ∀ ∈                         (7.1) 

We call c  as the closest point in C or the projection of x  

onto C , i.e. Proj ( )C x (see Fig. 7.1)  if Proj ( )Cc x∈  such 

that the following condition holds: 

                       ,x c x c c C′ ′− ≥ − ∀ ∈                 (7.2) 

 

 
Fig. 7.1 Proximal normal and Limiting normal cones. 

 

Squaring both sides of (7.2) and then using the properties of 

inner product we can easily obtain the conclusion that 

Proj ( )Cc x∈ iff  
21

, ,
2

w c c c c c C′ ′ ′− ≤ − ∀ ∈    (7.3) 

where the vector w x c= − is perpendicular to C at c . Now 

any nonnegative multiple , 0tw tζ = >  of w  is a proximal 

normal.  

Definition 7.1 (Proximal Normal Cone): A vector ζ is 

called the proximal normal to C at c  iff there exists some 

0σ >  such that  
2

, ,c c c c c Cζ σ′ ′ ′− ≤ − ∀ ∈  and set 

of all such vectors, denoted by ( )P

CN c  is a cone and it is 

called the Proximal Normal Cone. 

The interesting fact is that if c C∈  

but Proj ( ),
n

Cc x x∉ ∀ ∈R , we have { }( ) 0P

C
N c = . But if 

n
C ⊂ R  is closed and convex, then  

                     { }bdr( ) ( ) 0P

C
c C N c∈ ⇒ ≠ .  

Definition 7.2 (Limiting Normal Cone):  Suppose that   
n

C ⊂ R  is a closed set and c C∈ . Then a vector ζ is 

called the limiting normal to C  at c  if  

lim , ( ), ,P

i i C i i iN c c C c cζ ζ ζ= ∀ ∈ ∈ →  and the set of 

all such  limiting normals, denoted by ( )L

CN c  is a cone called 

the  limiting normal cone to C  at c . 

Note that ( )
P

C
N c ⊂ ( )

L

C
N c  for all c C∈ , but if C  is a 

convex set, then ( )P

CN c = ( )L

CN c  for all c C∈ . Moreover, 

if bdr( )c C∈  then { }( ) 0L

CN c ≠ . 

Definition 7.3 (Proximal Normal Subdifferential): Let us 

consider ( ]: ,nf → −∞ +∞�
R  to be a lower semi-

continuous function and  the domf   is such that, 

                 { }dom : ( )f x f x= < +∞ . 

Then proximal normal subdifferential of f at domx f∈ is 

defined as P ( ) 0, 0 :f xζ δ σ∈∂ ⇔ ∃ > ∃ ≥  

 
2

( ) ( ) , , ( )f y f x y x y x y B xδζ σ≥ + − − − ∀ ∈ . 

Definition 7.4 (Limiting Subdifferential): The limiting 

subdifferential of a function f at domx f∈ is defined as 

{ }
L ( )

lim : ( ), , ( ) ( ) .i i P i i i

f x

f x x x f x f xζ ζ ζ

∂

= = ∀ ∈∂ → →
 Now we are interested to extend this notion to Lipschitz 

continuous function. 

Definition 7.5 (Lipschitz Continuous): Let : nf →�R R  be 

a function and 
nx ∈R  is a given point. Then f is said to be 

Lipschitz near x , if there exist a scalar 0K >  and   a positive 

number 0ε >  such that  

     ( )1 2 1 2 1 2
( ) ( ) , , ,f x f x K x x x x B x ε− ≤ − ∀ ∈ , 

where B  is the open ball of radius ε  about x  and K  is the 

called the Lipschitz constant. 

A function f  Lipschitz in a neighbourhood of a point 

n
x ∈R  does not necessarily imply the differentiability at that 

point, but we can find the generalized directional derivative, 

        
, 0

( ) ( )
( ; ) : lim sup

y x

f y v f y
f x v

λ

λ
λ→ ↓

+ −
=�

  

We are now in a position to define the Clarke’s subdifferential:                        

{ }( ): : ( ; ) , ,n n

C f x f x v v vξ ξ∂ = ∈ ≥ ∀ ∈���
R R  

It is worth to mention that ( )C f x∂ is a compact convex 

nonempty set satisfying the usual differential calculus, 

                         ( ) ( )( )
C C

f x f x−∂ = ∂ −   

  and           ( )( ) ( ) ( )C C Cf g x f x g x∂ + ⊂ ∂ + ∂  

This generalized gradient and its calculus were first defined by 

Clarke in 1973 [7], so ( )C f x∂  is called Clarke 

subdifferential of f . Taking into account that a Lipschitz 

function is differentiable almost everywhere the Clarke’s 

subdifferential can be defined alternatively as 

         { }( ) : co lim ( ) : ,
C i i i

i
f x f x x x x

→+∞
∂ = ∇ → ∉��

U  

where U is any set of measure zero containing the local points 

of nondifferentiability of f . See, for example ([7], [8], [19]) 

for more details about nonsmooth analysis and its basic 

calculus. 

The fundamental ideas of Nonsmooth Analysis were first 

restricted to locally Lipschitz functions where the class of 

convex functions plays an important role.  
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Having introduced briefly the main concepts of nonsmooth 

analysis we are now in position to state a nonsmooth version of 

the Maximum Principle. Let us as before consider the problem 

( )

( )
( ) ( )
( )

0

Min ( ), ( )

s.t. , ( ), ( ) a.e. [ , ]

       all [ , ]

( ) a.e. [ , ]

( )

, ( ) 0 for 

J x x

x t t x t u t t

h t

u t t

x x

a b

f a b

OCP t x t a b

a b

a

ϕ=

∈

∈

∈ ∈

∈




=


≤





ɺ

U
 

Before proceeding some new definitions are called for.  

Definition 7.6 (Integrably Lipschitz): A function f  is 

said to be integrably Lipschitz in x  near 
*

x if there exist 

0ε >  and an integrable function k  such that, for almost 

every [ ],t a b∈  the following condition holds: 

      

( )
2 1

*

2 1 1 2

( , , ) ( , , )

( ) , ( ) , , ,

f t x u f t x u

k t x x u t x x B x ε

−

≤ − ∀ ∈ ∈U

 

Definition 7.7 (The Graph of a multifunction U ): The 

graph of the multifunction [ ]: , ma b →RU , denoted by 

GrU  is defined as the set 

                   [ ]{ }: ( , ) , : ( )mGr t u a b u t= ∈ × ∈RU U  

We shall impose the following hypotheses which make 

reference to an optimal solution ( )* *,x u  and a 

parameter 0ε > : 

 (NH1) The function ( , ) ( , , )t u f t x u→  is ×L B  

measurable and Lipschitz on  
*( ) (0, )x t B ε+ . 

(NH2) ϕ is Lipschitz near ( )* *( ), ( )x a x b with Lipschitz 

constant Kϕ . 

(NH3) h is upper semicontinuous and for each [ ],t a b∈  the 

function ( ),h t ⋅  is Lipschitz on  
*( ) (0, )x t B ε+  with 

Lipschitz constant 
hK . 

(NH4) GrU  is a Borel set. 

Also we define the partial subdifferential, ( ), ( )x h t x t>∂ as  

( ) ( ) ( ) ( ){ }= co lim : , , , , , , 0i i C i i i i i i
i

h t x t x t x h t xγ γ γ
→∞

= ∈∂ → >

and the pseudo-Hamiltonian function as in section 5. 

Theorem 7.1 (Nonsmooth Maximum Principle): 

(Theorem 9.3.1, [26]) Suppose that ( )* *,u x is a strong local 

minimum of ( )OCP and assume that hypotheses (NH1)-

(NH4) are satisfied. 

 Then [ ]( ) ( )1.1 , ; , 0, ,n
p W a b C a bλ µ ⊕∃ ∈ ≥ ∈R and a 

measurable function [ ]: , n
a bγ →R  satisfying 

( )*( ) , ( )   . .xt h t x t a eγ µ>∈∂  such that the following 

conditions are satisfied: 

(i) The Nontriviallity Condition 

         ( ) ( ), , 0,0,0p µ λ ≠  

(ii) The Adjoint Equation                             

( )* *( ) , ( ), ( ), ( ) a.e.C

x
p t H t x t q t u t− ∈ ∂ɺ  

(iii) The Weierstrass Condition 

( ) ( )* * *, ( ), ( ), ( ) max , ( ), ( ), a.e.
u

H t x t q t u t H t x t q t u
∈

=
U

 

(iv) The Transversality Condition 

( ) ( ) ( )* *( ), ( ) ( ), ( ) ,0Cp a q b x a x bλ ϕ ζ− ∈ ∂ +  

for some
nζ ∈R  

(v) { } ( )*supp I xµ ⊂ .  

Here we define  

[ )
[ )

[ ]

,

,

( ) ( ) ( )   for ,

( ) :
( ) ( ) ( )   for 

a t

a b

p t s ds t a b

q t
p b s ds t b

γ µ

γ µ

 + ∈


= 
+ =



∫

∫
 

and ( ) ( ){ }* *: : , ( ) 0I x t h t x t= =    

In the statement of the theorem 
C

x∂ denotes the Clarke 

subdifferential (with respect to the x  variable). 

We refer readers to ([7] and [9]) for the detailed 

presentations and to [12] for the recent developments in the 

nonsmooth maximum principle. 

VIII. CONCLUSION AND FUTURE  DIRECTIONS 

We have presented a brief review on optimal control 

problems with state constraints which appear in a very natural 

way when modeling many real life engineering applications in 

robotics, aeronautics and medicine. We have introduced some 

important issues on optimal control theory as well as on 

nonsmooth analysis from the very beginning to the recent 

developments. In all optimal control problems, necessary 

conditions are a powerful tool in the determination of the 

optimal solution. Indeed, they are widely used to develop 

solvers. Moreover, they can provide qualitative information on 

the solution and are the basis for the study of regularity of the 

optimal control, an important ingredient in choosing efficient 

solvers for optimal control problems. However, necessary 

conditions for optimal control problems with state constraints 

are not easy to use in applications due to the presence of 

measures as multipliers. In the very beginning of the Optimal 

Control Theory, necessary conditions for state constrained 

problems were not stated directly in terms of measures. Most 

of such conditions were derived assuming that the optimal 

trajectory would touch the boundary of the constraint set in a 

finite number of times, an assumption that could not be made a 

priori, on applications.  

Many questions concerning necessary conditions for state 

constrained problems are unanswered or not clearly answered. 

In this PhD thesis we hope to study and contribute to four of 
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important questions concerning state constraints, not 

necessarily independent; 

(1) what kind of necessary conditions can we obtain using 

the latest developments on the Euler-Lagrange Inclusion type 

conditions for control problems with differential inclusion  

developed in [9]  and/or  exact penalization techniques 

introduced in [11]?  

(2) is it possible to identify classes of problems for which 

the measures are absolutely continuous?;  

(3) is it possible to identify a class of problems with optimal 

trajectories touching the boundary of the constraints in a finite 

number of points?  

(4) under which conditions can we assert that when the 

trajectory touches the boundary it will remain there during an 

interval of time?;  

The quest for answers to such questions will be illustrated 

by the treatment and study of several academic examples.   
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